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we begin with the theory of smooth manifolds

Ref F Warner Foundations of Differential Manifolds
and Lie Groups

J Lee Introduction to Smooth Manifolds

Submanifolds of IRN

Def1 M E B 1k is an n din't submanifold of Bntk

of class CP if V X E M 7 nbd U E B and
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When K 1 we say M is a hypersurface
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is a co submfd of Muir IR dim 50Cn ncn
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i M E B
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and a CP diffeomorphism f n U V
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Iii V X E M 7 nbd EE U EBht and o E W E B

and a CR map g w Ruth
St G is a homeomorphism onto its image gCW M n U

wth dojo is 1 1 local parametrization chart

Remark For any two such charts
Gi Wi IR in 1,2 as in Ciii

then the transition maps 95 o G is a CP diffeomorphism
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Abstract Manifolds
locally n

Idea n manifolds I opensubsets of IR

described by compatible charts into IR

ASSUME n M Hausdorff paracompact topological space

partition of unity

Def't n A CP Atlas on M is a collection of charts Ui dillie
S t i Ui c I forms an open cover of M

Iii Xi Ui WithIR are homeomorphisms Vi c I



and the transition maps

log o 05 Qi lui n Uj Ij Ui nu are CP differ
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Def flui.fi c I Vj Yj jej if their union is an atlas

Def't r An equivalence class of CP atlas on M is called a

differentiable structure of class CP on M

A differential manifold consists of a Hausdorff
paracompact topologicalspace M together with an

atlas f Ui fistic I

Remark M connected dim M n well defined

by invariance of domain

ASSUME Mn connected smooth line manifold

n
Def N E M is a submanifold if V P E N 7 chart U ol

of M St PE U and 01 N n U E IR is a submfd



Examples of abstract manifolds

a submfds of Rntk

b 7 Co structure on a square not inherited from IR

HII
c S E Bnt can be covered by only two charts

N Xi Xn
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A description of co structure on BP
Xz

OI X Io IR OI Hi xz7
22 1 Ez Xz to IR Ezix x I
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24 1 us Foi are well defined on IRR

and they form a chart on CRP
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e Replace IR by E 7 ComplexProjectiveSpace EP
dim 2n

Def M is orientable if 7 atlas ICUicolillic I set

all transition maps are orientation preserving
i.e det dlOjodi's so

Examples 5h is orientable BUT BIP is NOT when n is even

Smooth Maps between manifolds

Let Mm N be smooch manifolds

DEI A Cts map f M N is smooth

if H X E M I charts Uil for X E M

and Chart V X for Cx E N

S t X fo 01 i flu HCV is smooth

x fox
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Example M E pith submfd and F IR IR smooth

F M M IR is a smooth snap between manifolds

Def'd A smooth map f M N is called an immersion at p c M
Pa fash

if 7 charts CU 07 for M V 4 for N s t

d 4 fool is 1 1 at locx



Remark submersion local differ if it is onto bijective

Def f e M N diffeomorphism if f is bijective and
both f f are smooth

Exercise Ip Etta S2


